热门搜索:西门子
产品展示 / products 您的位置:网站首页 > 产品展示 > 西门子 > 西门子变频器 > 西门子变频器6SE6420-2UC11-2AA1
西门子变频器6SE6420-2UC11-2AA1

西门子变频器6SE6420-2UC11-2AA1

简要描述:西门子变频器6SE6420-2UC11-2AA1
制动单元(无论内置还是外置)规定了所能使用的制动电阻的最小阻值,小于该阻值可能损坏制动单元(因电流太大);
制动电阻阻值选择太大会导致制动功率降低,Udc max2/ Rmin = Pbrake resistor max ,Udc max为直流母线电压,最大直流母线电压一定的情况下,制动电阻阻值越大,制动电阻的最大功率就越小;

产品型号:

所属分类:西门子变频器

更新时间:2021-07-12

厂商性质:代理商

详情介绍

西门子变频器6SE6420-2UC11-2AA1

以下信息适用范围:MM420/430/440

制动电阻


MM440能否使用制动电阻?

  • 外形尺寸为AF (0.12~75kW)MM440变频器带有内置制动单元,连接制动电阻即可实现能耗制动。
  • 外形尺寸为 FX  GX (90~200kW)MM440 变频器其不带内置制动单元,可采用外接的MASTERDRIVES制动单元及其相应的制动电阻(参看样本 DA65.10)来实现能耗制动,或采用第三方制动单元。

注意:选型样本所推荐制动电阻的功率是以5%的工作停止周期选配,如果实际工作周期大于5%可能会导致制动电阻损坏。如果选择第三方制动电阻,请确保制动电阻阻值是选型样本推荐电阻阻值,浮动范围是±10%。 如果阻值过小可能损坏制动单元,过大可能达不到制动效果。


MM420/MM430能否使用制动电阻?

  • MM420变频器本身没有内置制动单元,如需使用制动电阻必须为其安装外部制动单元,将制动单元与MM420变频器的直流母线DC+/DC-进行连接。选择外部制动单元时,需考虑变频器的直流母线电压,负载制动功率,制动停止工作周期等因素。
  •  MM430变频器本身没有内置制动单元,其直流母线端子DC+/DC-也仅用于测量直流母线电压使用,不建议用其连接外部制动单元(连接外部制动单元可能由于制动单元电流太大导致直流母线端子损坏)。

 0.12~75kWMM440变频器制动电阻如何接线?

制动电阻的两根线直接连接至MM440变频器的B+,B-端子,不区分极性。

注意:MM440变频器的B+与DC+为同一个端子


MM440使用制动电阻后需要设置哪些参数?
AF尺寸MM440(内置制动单元MM440)必须设置以下参数,否则制动电阻无法发挥作用:

  • P1240=0,禁止直流电压控制器;
  • P1237>0,具体参数值以满足实际工艺要求并且制动电阻不过热为宜,根据工艺情况调试。

FXGX尺寸MM440安装外部制动单元后只需设置P1240=0即可。


制动电阻如何选择?
制动电阻有两个重要的参数:阻值和功率?

制动电阻阻值选型原则:

  • 制动单元(无论内置还是外置)规定了所能使用的制动电阻的最小阻值,小于该阻值可能损坏制动单元(因电流太大);
  • 制动电阻阻值选择太大会导致制动功率降低,Udc max2/ Rmin = Pbrake resistor max Udc max为直流母线电压,最大直流母线电压一定的情况下,制动电阻阻值越大,制动电阻的最大功率就越小;

综上所述:制动电阻的阻值需要根据负载的最大制动功率与变频器的最小制动电阻阻值要求共同确定;必须保证制动电阻最大功率Pbrake resistor max  >= 负载的最大制动功率

制动电阻功率选型原则:

  • 制动电阻的功率通常指的是制动电阻的平均功率,也就是制动电阻连续工作时的功率。必须保证制动电阻平均功率Pbrake resistor average  >= 负载制动周期内的平均制动功率;
  • 负载制动周期内的平均制动功率与负载制动时的制动能量,负载的制动周期有很大关系,需根据设备的工艺情况进行计算;
  • 同时还需要保证制动电阻在最大制动功率情况下连续工作时间 <= 负载最大制动功率的连续制动时间;

注意:选型样本所推荐制动电阻的功率是以5%的工作停止周期选配,制动电阻连续工作最大时间为12S,周期为240S。也就是说西门子制动电阻只能以最大功率连续工作12S12秒后仅能承担5%的最大制动功率,直到240秒后制动电阻得到充分的冷却,方可再次承担12秒的最大制动功率。


制动电阻选型实例
转动惯量为10Kgm² 的负载由1500rpm减速到静止。
计算制动电阻值,额定功率。

需要的数据:
        
电机及驱动                                             30kW
        
电机额定转矩                                         191Nm
        
减速时间                                                 待定
        重复周期时间                                         30 s
        
负载转动惯量 (J)                                    10 Kgm²
        
电阻阻值(R)                                            未知
        电阻额定功率值(Pr                         未知
        电阻工作电压 (V)                                  750V

首先最基本的一步是确定减速时间 (Tb ):

1                                      

最大减速发生在电机额定转矩的150%
最大值Mb max = 1.5 x 191 = 286.5
最快的减速时间Tb :  

2

可以确定一个实际的减速时间 , 对于这个例子,令 =7s
计算减速时间为7s时需要的制动转矩:

3

制动功率为:

4
制动电阻阻值为:

5
电阻的额定功率为:由于制动电阻的工作为间歇性的,其额定功率可按间歇性的功率选择而不必是连续功率。优点是可根据电阻的过载系数来充分利用电阻的过载值(O/L), 这个系数可由一组冷却曲线得出,这个曲线是由制动电阻生产商或者供应商提供的。

在这个例子中,减速时间设置为7秒,循环周期时间为30秒。
所选择的电阻的额定功率为:

6
实际上,在再生制动过程中,电机和负载的机械损耗可耗散15%20%的制动能量。通常的情况下,实际上推荐的制动电阻阻值是代表应用中的最小值,使用推荐的阻值有可能会产生额外的制动转矩。然而,由于负载惯量的能量反馈值是由减速度决定,制动单元通过调整制动电阻的运行/停止周期来实现按照实际速率消耗能量。


制动能量的简单计算

1: 某客户将MM440 应用在升降驱动设备上,并要求在6.25秒内以0.4m/s的速度下500kg的重物,30s重复一次该过程,应当如何计算制动功率?

7

重物的势能为: A= m x g x h =500kg x 9.81 x (0.4m/s x 6.25s)=12263J
最大功率为:    P brake Appl max = A/s = 12263J/6.25s = 1962W
平均功率为:    P brake Appl average = 1962W x 6.25s / 30s= 392.4W

某驱动负载需要从2900RPM的速度降至为0,其驱动数据见表1,如何计算反馈回变频器直流侧的制动能量?

电动机额定功率                 Pmotor N=5.5 KW
电动机效率                         ŋmotor =0.865
电动机额定转速                 N motor N= 2925 RPM
电动机转动惯量                 J motor =0.015kgm2
负载转动惯量                     J load =0.4 kgm2
电动机最高运行转速         nmax =2900RPM
制动时间                             t brake appl =5s
负载工作周期                     t cycle appl =15s

8


9

 西门子变频器6SE6420-2UC11-2AA1

 

(1)、恒转矩负载
恒转矩负载又是分为摩擦类负载和位能式负载。
摩擦类负载的起动转矩一般要求额定转矩的150%左右,制动转矩一般要求额定转矩的100%左右,所以变频器应选择具有恒定转矩特性,而且起动和制动转矩都比较大,过载时间过载能力大的变频器。
位能负载一般要求大的起动转矩和能量回馈功能,能够快速实现正反转,变频器应选择具有四象限运行能力的变频器。
(2)、风机泵类负载
负机泵类风载是典型的平方转矩负载,低速下负载非常小,并与转速平方成正比,通用变频器与标准电动机的组合合适。这类负载对变频器的性能要求不高,只要求经济性和可靠性,所以选择具有U/f=const控制模式的变频器即可。如果将变频器输出频率提高到工频以上时,功率急剧增加,有时超过电动机变频器的容量,导致电动机过热或不能运转,故对这类负载转矩,不要轻易将频率提高到工频以上。
(3)、恒功率负载
恒功率负载指转矩与转速成反比,但功率保持恒定的负载,如卷取机、机床等。对恒功率特性的负载配用变频器时,应注意的问题:在工频以上频率范围内变频器输出电压为定值控制,所以电动机产生的转矩为恒功率特性,使用标准电动机与通用变频器的组合没有问题。而在工频以下频率范围内为U/f定值控制,电动机产生的转矩与负载转矩又相反倾向,标准电动机与通用变频器的组合难以适应,因此要专门设计。

SIRIUS 3RW44 软起动器的特点为设计紧凑,可节省空间,且控制柜布局直观明了。 在优化电机起动和停机方面,由于在节约方面*,与使用变频器的应用相比,创新的 SIRIUS 3RW44 软起动器更具吸引力。新扭矩控制和可调电流限值使得高性能软起动器几乎可用于任何一项任务。电机起动和停机期间可有效避免突发性扭矩应用和电流峰值。从而在计算开关柜尺寸及维护已安装机器时可创建潜在节约。 对于直接串联电路和内三角电路,SIRIUS 3RW44 软起动器具有节约功效,特别是在尺寸和设备成本方面。

已集成到软起动器中的旁通触点在检测到电机软起动后可绕开晶闸管。这样,可显著降低软起动器以额定值工作期间的热损耗。

结合起动、工作和停机时的各种可能性以确保对特定应用需求的**适应。可使用菜单控制键盘和具有背光照明的菜单提示、多行图形显示屏,执行操作和调试。使用预先选择的语言,通过少量设置,即可快速、简便、可靠地优化电机软起动和软停机。每个菜单项的四键操作和纯文本使得参数化和操作的每个环节都十分直观明了。

应用标准

  • IEC 60947 -4-2
  • UL/CSA

功能

通过现代化、人性化的用户提示,键盘及带背光照明功能的菜单提示、多行图形显示屏,可简便、快速地对 3RW44 进行调试。使用选择的语言,通过少量设置,可快速、简便、可靠地优化电机软起动和软停止。每个菜单项的四键操作和纯文本使得参数化和操作的每个环节都十分直观明了。工作期间及施加控制电压后,显示区域持续显示测量值、工作值及警告和故障消息。可通过连接电缆将外置显示器和操作员模块连接到软起动器,从而实现有源指示及直接从控制柜门读取类似消息。

SIRIUS 3RW44 软起动器具有**功能。集成的旁通接触系统可以降低软起动器运行过程中的功率损失。从而可靠地防止加热开关柜周围的环境。 SIRIUS 3RW44 软起动器具有内置本征设备保护。可防止电源部分晶闸管的热过载,如由于难以接受的高合闸操作。

因为 SIRIUS 3RW44 软起动器的功能,可省去安装附加电机过载继电器的布线费用。此还,还具有可调脱扣等级和热敏电机保护功能。 作为选项,晶闸管也可由 SITOR 半导体熔断器提供短路保护,以便短路(协调类型 2)后软起动器仍然工作。由于可调电流限值,还可以可靠地避免突然的电流峰值。

还可使用 PROFIBUS DP 或 PROFINET 模块升级 SIRIUS 3RW44 软起动器。 由于其通讯能力和可编程控制输入和继电器输出,SIRIUS 3RW44 软起动器可轻松、快速集成到更高一级的控制器中。

此外,还具有爬行速度功能,可用于定位和设置工作。通过该功能,可控制电机以减小的转矩和可调低速双向转动。

另外,SIRIUS 3RW44 软起动器还具有新的、组合式 DC 制动功能,可用于驱动负载的快速停止。

突出特点

  • 具有分离脉冲、转矩控制或电压等变率、可调转矩或电流限制及其任意组合的软起动,取决于负载类型
  • 集成式旁通接触系统,可**小化功率损失
  • 用于起动参数(如起动转矩、起动电压、软起动和软停止时间)及三个独立的参数集中的更多参数的各种设置选项
  • 起动检测
  • 内三角电路,在尺寸和设备成本方面具有节约功效
  • 可选择各种软停机模式:自由软停机、转矩控制的泵软停机、组合式 DC 制动
  • 固态电机过载和本征设备保护
  • 电机的热敏电阻保护
  • 键盘,带采用背光照明的、具有菜单提示功能的多行图形显示器
  • PC 通信接口,用于更**的参数设置与控制和监视
  • 适应电机馈电装置简便
  • 安装与调试简单
  • 工作状态和故障消息显示
  • 使用可选的 PROFIBUS DP 或 PROFINET 模块连接到 PROFIBUS 和 PROFINET
  • 外部显示和操作员控制模块
  • 电源电压 200 ~ 690 V,50 ~ 60 Hz
  • 使用温度可高达 60 ℃(40 ℃ 时开始降低额定值)

 

变频器日常使用中出现的一些问题,很多情况下都是因为变频器参数设置不当引起的。西门子变频器可设置的参数有几千个,只有系统地、合适地、准确地设置参数才能充分利用变频器性能。 

变频器控制方式的选择由负荷的力矩特性所决定,电动机的机械负载转矩特性根据下列关系式决定:

p= t n/ 9550

式中:p——电动机功率(kw)


图 1 可编程控制器应用系统设计与调试的主要步骤

( 1 )深入了解和分析被控对象的工艺条件和控制要求

a .被控对象就是受控的机械、电气设备、生产线或生产过程。

b

参数设置编辑

变频器的设定参数多,每个参数均有一定的选择范围,


 

使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象。

控制方式:即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。

低运行频率:即电机运行的小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。而且低速时,其电缆中的电流也会增大,也会导致电缆发热。

 

运行频率:一般的变频器频率到60Hz,有的甚至到400 Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。

载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。

电机参数:变频器在参数中设定电机的功率、电流、电压、转速、频率,这些参数可以从电机铭牌中直接得到。

跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。

 

控制参数编辑

变频器日常使用中出现的一些问题,很多情况下都是因为变频器参数设置不当引起的。西门子变频器可设置的参数有几千个,只有系统地、合适地、准确地设置参数才能充分利用变频器性能。 [1]

变频器控制方式的选择由负荷的力矩特性所决定,电动机的机械负载转矩特性根据下列关系式决定:

p= t n/ 9550

 

式中:p——电动机功率(kw)

t——转矩(n. m)

n——转速(r/ min)

转矩t与转速n的关系根据负载种类大体可分为3种[2]。

(1)即使速度变化转矩也不大变化的恒转矩负载,此类负载如传送带、起重机、挤压机、压缩机等。

(2)随着转速的降低,转矩按转速的平方减小的负载。此类负载如风机、各种液体泵等。

(3)转速越高,转矩越小的恒功率负载。此类负载如轧机、机床主轴、卷取机等。

变频器提供的控制方式有v/f控制、矢量控制、力矩控制。v/f控制中有线性v/f控制、抛物线特性v/f控制。将变频器参数p1300设为0,变频器工作于线性

功能介绍

v/f控制方式,将使调速时的磁通与励磁电流基本不变。适用于工作转速不在低频段的一般恒转矩调速对象。

将p1300设为2,变频器工作于抛物线特性v/f控制方式,这种方式适用于风机、水泵类负载。这类负载的轴功率n近似地与转速n的3次方成正比。其转矩m近似地与转速n的平方成正比。对于这种负载,如果变频器的v/f特性是线性关系,则低速时电机的许用转矩远大于负载转矩,从而造率因数和效率的严重下降。为了适应这种负载的需要,使电压随着输出频率的减小以平方关系减小,从而减小电机的磁通和励磁电流,使功率因数保持在适当的范围内。

 

可以进一步通过设置参数使v/f控制曲线适合负载特性。将p1312在0至250之间设置合适的值,具有起动提升功能。将低频时的输出电压相对于线性的v/f曲线作适当的提高以补偿在低频时定子电阻引起的压降导致电机转矩减小的问题。适用于大起动转矩的调速对象。

变频器v/f控制方式驱动电机时,在某些频率段,电机的电流、转速会发生振荡,严重时系统无法运行,甚至在加速过程中出现过电流保护,使得电机不能正常启动,在电机轻载或转矩惯量较小时更为严重。可以根据系统出现振荡的频率点,在v/f曲线上设置跳转点及跳转频带宽度,当电机加速时可以自动跳过这些频率段,保证系统能够正常运行。从p1091至p1094可以设定4个不同的跳转点,设置p1101确定跳转频带宽度。

 

 

图5-45  采用仿STL指令编写的梯形图

如果某步之后有多个转换条件,可将它们分开处理,例如步M302之后有两个转换,其中转换条件T0对应的串联电路放在电路块内,接在左侧母线上的M302的另一个常开触点和转换条件X2的常开触点串联,作为M305置位的条件。某一负载如果在不同的步为“1”状态,它的线圈不能放在各对应步的电路块内,而应该用相应辅助继电器的常开触点的并联电路来驱动它。

 

功能介绍

有些负载在特定的频率下需要电机提供特定的转矩,用可编程的v/f控制对应设置变频器参数即可得到所需控制曲线。设置p1320、p1322、p1324确定可编程的v/f特性频率座标,对应的p1321、p1323、p1325为可编程的v/f 特性电压座标。

参数p1300设置为20,变频器工作于矢量控制。这种控制相对完善,调速范围宽,低速范围起动力矩高,精度高达0.01%,响应很快,高精度调速都采用svpwm矢量控制方式。

参数p1300设置为22,变频器工作于矢量转矩控制。这种控制方式是目前上的控制方式,其他方式是模拟直流电动机的参数,进行保角变换而进行调节控制的,矢量转矩控制是直接取交流电动机参数进行控制,控制简单,度高。

6ES7 288-1SR20-0AA

 

西门子MM440变频器的工作原理和其它牌子变频器的工作原理并没有太大的区别,只是他们采用电子元件的型号和电路结构不同而已,小编向大家简要讲述西门子MM440变频器结构组成,这一节就和大家讲讲西门子MM440变频器的工作原理想了解更多工业电路板、电梯电路板、变频器相关知识请关注“从零开始变频器维修”。

 

 

西门子变频器

要想知道西门子MM440变频器的工作原理,首先我们要清楚一个问题,就是变频器是做什么用的?变频器是用来控制电动机速度的一个器件,它可以实现无极调速,被广泛用在自动化控制设备中。那么变频器是怎样进行调速的呢?把这个问题搞清楚也就懂得西门子MM440变频器的工作原理了。

 

西门子变频器驱动电路

西门子MM440变频器的工作原理是这样的。380VAC的交流电压经过VUB120-12No1整流三相整流进行整流,然后经过六个容量为560UF耐压400的电解电容组成滤波电路,把整流之后的脉动直流电转换成平滑的的直流电,然后再通过变频器的主电路板发出六路控制脉冲输给电压电流放大电路板,变频器维修界俗称这块电路板为驱动电路,驱动电路板将主电路板发出的六路脉冲进行电压及电流放大后,送给逆变电路板,通过逆变电路板中的IGBT模块6MBI75-120-02把直流电逆变成交流电,在逆变过程中主电路板又对逆变脉冲进行调制,从而实现电压在0~380V之间可调,频率在0HZ~50HZ之间可调,通过改变供给电动机的供电电压及频率,从而实现电动机无极调速的目的。

对于更详细的西门子MM440变频器的工作原理,朋友们有兴趣的话可以小编进行详细讨论,将会以图、文、实物相结合的方式向您系统的传授西门子MM440变频器的工作原理。想了解更多工业电路板、电梯电路板、变频器相关知识请关注“从零开始变频器维修”



留言询价

留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7

联系我们

浔之漫智控技术(上海)有限公司 公司地址:上海市松江区广富林路4855弄52号3楼
  • 电  话:15221406036
  • QQ:3064686604
  • 公司传真:
  • 邮箱:3064686604@qq.com

扫一扫 更多精彩

微信二维码

联系我们

contact us

扫一扫,关注我们

返回顶部